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Abstract

A closed-form displacement response of beam-type structures to moving line loads is proposed in this paper. Green’s
function of the beam on an elastic foundation is obtained by means of Fourier transform. The theory of linear partial
differential equation is used to represent the displacement of the beam in terms of convolution of the Green’s function.
To evaluate this convolution analytically, the theory of complex function is employed to seek the poles of the integrand
of the generalized integral. All the poles are identified and given in a closed form. Theorem of residue is then utilized to
represent the generalized integral using contour integral in the complex plane. Closed-form displacement is provided
and numerical computation is performed. The numerical results show that maximum displacement of a beam with
material damping occurs behind the moving load. Also, the maximal dynamic displacement reaches its maximum as the
load moves at the critical speed. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Beam; Moving load; Elastic foundation; Hysteretic damping; Green’s function; Fourier transform; Theorem of residue

1. Introduction

The response of beam-type structures to moving loads has been studied extensively over the past several
decades (Fryba, 1977). Considerable research has been conducted to investigate the displacement response
of beam under moving loads (Kenney, 1954; Achenbach and Sun, 1965; Florence, 1965; Steele, 1967, 1968).
A growing interest on this topic also arises in railway and highway industries in recent years because beam-
type structures can be used as simplified physical models of rail-track and pavement (Adams and Bogy,
1975; Mulcahy, 1973; Huang, 1977; Choros and Adams, 1979; Saito and Terasawa, 1980; Jezequel, 1981;
Patil, 1988; Hardy and Cebon, 1994; Kim and Roesset, 1996; Sun and Deng, 1997).

An interesting aspect of this topic is that when the foundation is modeled as an elastic foundation, a
critical velocity is found existing for the moving load, which may cause significant variation of the response
of the beam (Kenney, 1954). Waves excited by a moving load with supercritical velocity propagate in a
different way as they do when the load velocity is subcritical. The critical velocity is also predicted and
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observed by other researchers either through electrical analogy experiment (Criner and McCann, 1953) or
through theoretical analysis (Patil, 1988; Sun, 1998).

Because high-speed vehicles (e.g., trains and automobiles) are getting extensively adopted as the surface
transportation carriers, considerable attention has been paid to the response of transportation infra-
structure under high-speed loading conditions (Elattary, 1991; Lee, 1994; Pan and Atluri, 1995; Sun, 1998;
Sun and Greenberg, 2000). In most studies the foundation of the beam is often assumed as an elastic
Winkler foundation. Under this assumption, the critical velocity can be given as (4KEI /m?)"/* (Criner and
McCann, 1953; Kenney, 1954; Sun, 1996; Kim and Roesset, 1996). It has been demonstrated that, moving
at the critical speed, the load will excite the beam to reach an infinite displacement (Kenney, 1954; Sun,
1998). In reality, however, damping exists in any physical system and kinetic energy dissipates because of
the effect of damping after a period of time. It can be expected that the unrealistic infinite displacement will
disappear if damping effect is taken into consideration in the mathematical model of beams subjected to
moving loads.

In this paper we considered the effect of material damping proposed by Foinquinos and Roesset (1995)
on dynamic displacement response of a flexible beam resting on an elastic foundation subjected to a moving
line load. A closed-form representation of the displacement response of the beam is obtained using Fourier
transform and the theorem of residue.

This paper is organized as follows. In Section 2, the governing equation of a flexible beam to external
load is provided and Green’s function of the beam is obtained using Fourier transform. In Section 3, re-
sponse of the beam to a moving constant load is constructed by convoluting Green’s function according to
the theory of linear partial differential equation. In Section 4, the roots of the characteristic equation are
identified as poles when integrating the generalized integral obtained in Section 3. In Section 5, we obtain
the closed-form displacement of the beam by using the theorem of residue to carry out the integral in a
complex plane. In Section 6 numerical results are provided to illustrate the shape of the displacement of
beam to moving loads. Conclusions are drawn in Section 7 in which summarized results and findings are
presented.

2. The Greens function of the beam

The governing equation of a flexible beam on an elastic foundation can be given as (Sun and Deng, 1997;
Sun, 1998, 2001)

0*y(x,1) 0%y(x,1)
TR,

where y(x, ) represents the displacement of the beam, x represents the traveling direction of a moving load,
and ¢ represents time. Also, EI is rigidity of the beam, E is Young’s modulus of elasticity, / is moment of
inertia of the beam, m is unit mass of the beam, and F'(x, ¢) is impressed external loads. A moving line load
can be expressed by

El = F(x,1) (1)

Hrg — (x — v1)’]

F(x,t) =P G,

(2)

where ry is the half length of the line load, and P is the amplitude of the applied load. Also, H(-) is the
Heaviside step function defined by

0 for x < xp
H(x—x0) =4 1/2 forx=1x (3)
1 for x > xg
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Given an initial condition of the beam, Egs. (1) and (2) constitute a complete mathematical description of
the problem considered here. In this paper, we assume that the beam is at rest initially. In other words, the
initial condition of the current problem is zero.

According to the theory of mathematical-physical equation (Morse and Keshbach, 1953), Green’s
function is the fundamental solution of a partial differential equation. For the current problem, Green’s
function of the beam corresponds to the solution of Eq. (1) provided that the external load is characterized
by Dirac-delta function

Fo)(x, 1) = 0(x — x0)6( — 1o) (4)
in which d(-) is Dirac-delta function defined by
/ O(x —x0)f (x)dx = f(xo) (5)
Define two-dimensional Fourier transform and its inversion as
Feo) =Flrwn) = [ [ rixnexpl-ie+ on)dedr (6a)
f) =FFEol =07 [ [ ool o) dedo (6b)
where F[-] and F~'[-] represent two-dimensional Fourier transform and its inversion, respectively. To solve

Green’s function, taking Fourier transform on both sides of Eq. (1) gives
EIE*G + KG — mo*G = Fy(&, ) (7)

where Fy(¢, ) is the Fourier transform of Fs(x,7), and dynamic displacement response y(x,#) has been
replaced by the symbol G = G(&,n;x0,1) to indicate the Fourier transform of Green’s function. Also, the
following property of Fourier transform is used in the derivation of Eq. (7)

(7" (0)] = (i) "F[£ (1)] (®)

Since 1?(5(6717) is the representation of Fj(x,¢) in the frequency domain, it is necessary to evaluate the
Fourier transform of Fs(x, ). This can be implemented by taking Fourier transform on both sides of Eq. (5)

E(C, ) = /70O /fo O(x — x0)0(t — 1) exp[—i(&x + wr)] dxdt = exp[—i(Exy + wty)] 9)

in which Dirac-delta function’s property, i.e., Eq. (5), is utilized for evaluating the above integral. Sub-
stituting this result into Eq. (7) and realizing that Eq. (7) is an algebraic equation, it is straightforward to see

6(57 @; X0, ty) = exp[—i(&xo + wto)](Elf4 +K - mwz)_l (10)

Green’s function given by Eq. (10) is described in the frequency domain and should be converted to the time
domain. To this end, take inverse Fourier transform on both sides of Eq. (10)

G(x, t;x0,8) = (2m)~ / / eXp{lE]); __:2 m((/; o)} dédw (11)

Formula (11) is Green’s function of the beam on an elastic foundation. Green’s function serves as the
fundamental solution of a partial differential equation. It can be very useful as will see later on when dealing
with linear systems.
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3. Integral representation of the solution
According to the theory of linear partial differential equation (Morse and Keshbach, 1953; Sun and

Greenberg, 2000), the solution of Egs. (1) and (2) can be constructed by integrating the Green’s function in
all the dimensions. Mathematically,

t [e%e]
y(x,t)Z/ / F(xo, )G (x, t; x0, 1) dxo dtg (12)

Taking Eqgs. (2) and (11) into Eq. (12) gives

[T [ PHI — (xo — vio)]exp{i[E(x — xo) + (1 — )]} »
Yoo t) = /_x /_oo /_m /_w (2n)*2rEL(E* + K — mic?) dadeod diy (13)

where K = K/EI and m = m/EI. Since we have

/oo H[r2 — (xo — vto)*] exp (—iéx) dxy = T exp(—idn) | sinred
t

—iévt 14
2ry B— 2ry "7 exp (—idely) (14a)

/ exp [—i(w + vé)t] dty = 2né(w + vé) (14b)

substituting Eqs. (14a) and (14b) into Eq. (13) and reapplying the property (5) gives

P % sin (1o &) exp [i€(x — vt)]
T 2nEl [oo roé(é4—mv2§2 _|_1?) d¢

So far, we have obtained the integral representation of dynamic displacement response of the beam
under a moving line load. For a realistic physical system, damping effect always exists. When foundation
damping is considered, according to Sun and Deng (1997), Sun (1996, 1998, 2000) and Kim and Roesset
(1996, 1998), a viscous term iCvé should be added into the denominator of the integrand of Eq. (15).
However, for asphalt concrete pavement, it is also appropriate to consider damping effect in pavement
material itself. In this case, linear hysteretic material damping proposed by Foinquinos and Roesset (1995)
can be a reasonable model to characterize the material damping effect. For instance, the same material
damping of linear nature has been adopted by Kim and Roesset (1996, 1998) to model a plate subjected to a
moving load. According to their study (Foinquinos and Roesset, 1995; Kim and Roesset, 1996), a viscous
term —i2DK should be added into the denominator of the integrand of Eq. (15) such that

y(x, 1) (15)

o0

sin (ro¢) exp i€ (x — v1)]

y(x7t) = ZTCEI [oo r05(54 _mv2€2 +E—12DE) (16)

Expression (16) can be further evaluated using complex function techniques. In the following sections, the
theorem of residue is employed to carry out this integration.

4. Roots of the characteristic equation

Before the integration (16) is further evaluated, it is necessary to investigate the roots of the characteristic
equation of this type

E(E —m*E + K —i2DK) =0 (17)
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Here, we assume that none of the parameters 71, K, C, D and v are zero. Characteristic Eq. (17) is a fifth
order algebraic equation with parameters of the beam, the foundation and the load. The roots of this
equation depend upon the distribution and combination of these parameters. Since an imaginary term
existing in this equation, no real-valued roots except & = 0 exist for Eq. (17). So we only consider the
complex roots for equation &* — m?é? + K — i2DK = 0.

Define the complex root of Eq. (17) as & = z = zg + iz (zr, z1 € Re, and z; # 0). Substituting it into Eq.
(17) and comparing the real and imaginary parts give the following quadratic equation systems

7 — 2zt — vz + K =0 (18a)

27z — v’z — 2DK = 0 (18b)
From Eq. (18b) we have

zr = mv*/2 + DK /z (19)
Replacing zz in Eq. (18a) by Eq. (19) gives

Z 4+ @' /4-K)Z—DK =0 (20)

The determinant of Eq. (20) is 4 = (*v* /4 — K)* + 4D?K" > 0. Therefore, there exist real roots for Eq.
(20) and they can be given by

7 = [(K —m*v*/4) £ 4'7))2 (21)
Since z; should be positive valued, only the following root is valid and adopted for the imaginary part of z

7 = £{[(K — o' /4) + 4']/2}' (22)
Substituting Eq. (22) into Eq. (19) gives the real part of z

zx = mv?/2 + DK/{[(K — m*v* /4) + 4] /2}'/? (23)
Remember & = z = zg + iz; and we can rewrite & as

&= (g +2)%"  with tan0 = z/z (24)
Hence, it is straightforward to give the expression for ¢&

&= (& +22)*e0™02) with n =0 and 1 (25)

5. Closed-form representation of the solution

Now we have obtained all the roots of the characteristic Eq. (17). Fig. 1 plots the location of these poles
in the complex &é-plane. Four complex roots are respectively located in different regions of the complex ¢-
plane and a single real root £ = 0 is located exactly at the origin. In general, these four complex poles are
distributed in the complex &-plane in such a way that a couple of them are located in the upper half-plane
and the other couple of them in the lower half-plane. Two cases need to be discussed. One case is the
displacement response of the beam in front of the moving load. The other case is the displacement response
of the beam behind the moving load.



8874 L. Sun | International Journal of Solids and Structures 38 (2001) 8869-8878

Im((f) \ é: -plane

> Re(&)

Fig. 1. Contour and poles for evaluating the complex function.

First we consider the solution where x — vt = 0. We are now able to rewrite displacement (17) as

P s 1&(x — vt
o) = / sinrpéexp [if(x — vr)] de (26)
27'EEII"0 PN 4 .
[1(¢-¢&)
=0
where £; (/= 0,...,4) represent five poles of the integrand. Contour for evaluating the generalized integral

of this type has been sketched in Fig. 1. In this case, only those poles above the real axis contribute to the
integral (16). By applying the theorem of residue we obtain

sinrpéexp [ié(x — vt)]

y(x,t) =p.v- 2mi res
(60 =P e 22 o
j=0
i Z res sinr0§46xp [iE(x — vt)] (27)
fm &=0 _Ho(f - &)
i

in which res(-) represents the residue of the function inside of parenthesis. Since there are poles located on
the real axle, integral of this type is evaluated in the sense of Cauchy principle value of integral and symbol
“p.v.” in Eq. (27) just means that. It should be noted that the first summation term in Eq. (27) requires
imaginary part of complex variable £ positive, which simply says only poles lying in the upper half-plane
having contribution to the integration. The second summation term in Eq. (27) applies to those poles that
are lying exactly on the real axle.
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To expand displacement into closed-form, one needs to express residues in Eq. (27) analytically. To this
end, we consider two scenarios. First, for the first summation term where Im¢& > 0, we see from afore-
mentioned analysis that two poles are located in the upper complex &-plane. In this scenario, the first
summation in Eq. (27) is represented as ) ;. . ,(R(¢)/Q'(E)), where R(E) = sinrplexp[il(x — vt)], O(&) =
Hj:()(é —¢;), and O'(¢) is the first order derivative of Q(&).

For the second summation term, the residue of the pole Im& = 0 can be obtained by taking the limit to
the following formula

RO _ R($)

“’S[Q@)] =95 @)
Since we have lim;_sin (r9¢) = 0, the denominate R(&) becomes zero while the denominator remains non-
zero valued. This implies that the residue at the pole £ = 0 vanishes. In other words, this pole does not
actually contribute to the integration. As a moving point load rather than a moving line load is considered,
one just needs to apply the same method to Eq. (17) and take the limit of Eq. (17) with respect to . In the
case of x — vt < 0, similar method applies except that Im ¢ < 0 and the contour in the lower half £-plane be
used.

So far, we have obtained all the solutions corresponding to different cases. If no damping effects are
considered, it has been demonstrated in the previous work (Kenney, 1954; Sun, 1998) that waves excited by
the moving load propagate along the beam in two directions and it looks symmetric if the observer is
traveling with the moving load at the same speed. Waves in two directions correspond respectively to
solutions of x — vt < 0 and x — vz > 0. Mathematically, this requires the poles of the integrand are sym-
metrically distributed with respect to the real axis. In the elastic cases this is true. However, when hysteretic
material damping presents in the system, it is no longer true. In this case, as shown in Fig. 1, these
asymmetric poles will result in distinct waves along the positive and negative longitudinal directions. The
concrete form of waves can be determined by closed-form solution (27).

6. Numerical computations

Based on the analytical results obtained in previous sections, numerical computations are performed
to illustrate dynamic displacement response of beam to a moving load. According to typical pavement
structures (Kim and Roesset, 1996), parameters used in calculation are EI = 2.3 kNm?, K = 68.9 Mpa,
m = 48.2 kg/m, P = 10.5 kN and »y = 0.075 m. Fig. 2 plots the displacement variation of beam at position
x = 0 versus time for different load velocity and damping ratio D. The result shown in Fig. 1 has been
compared to the result obtained using finite element method and superposition principle (Kim and Roesset,
1996) and it was found that they are identical. It should also be pointed out that in these figures negative
displacement means that the bottom of the beam is suffering with tension stresses.

It is clear from Fig. 2 that damping has visible effect on the shape of the dynamic displacement. The
higher the damping ratio, the smaller the absolute value of the maximal displacement. Also, we can see
from the displacement that for system with the damping dynamic response is no longer symmetric with
respect to time ¢ = 0, and the maximal dynamic displacement does not appear exactly beneath the moving
load. On the contrary, the maximal displacement occurs at the time after + = 0, which implies that the
maximal displacement response at x = 0 appears behind the moving load. The reason for this phenomenon
is because of the damping effect such that the reaction of the beam to the moving load is delayed.

Fig. 3 shows the variation of the maximal displacement with respect to load velocity for beams with
different damping. It can be seen that, according to the parameters used here, the critical velocity is
(4KEI /m*)""* = 128.5 m/s at which the maximum of the maximal dynamic displacement is reached. Also,
the absolute value of the deflection is growing with increasing velocity of the load at subcritical speed.
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Fig. 2. Dynamic displacement at position x = 0 versus time.
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Fig. 3. Maximum displacement of the beam versus velocity.

When the load velocity is less than 128.5 m/s, this conclusion is true. However, at the supercritical speed this
conclusion does not hold any more. The maximal dynamic displacement decreases with the increase of load
velocity and tends to approaching the maximal static displacement. Although this might have theoretical
value in helping us understand the high-speed phenomenon, it might not be of interest in practice because
vehicle speed in reality can rarely exceed such a critical velocity barrier.

7. Concluding remarks

In this paper, Fourier transform is used to solve the problem of steady-state response of a beam with
linear hysteretic material damping on an elastic foundation subjected to a moving constant line load. The



L. Sun | International Journal of Solids and Structures 38 (2001) 8869-8878 8877

solution is constructed in the form of the convolution of the Green’s function of the beam. The theorem of
residue is employed to evaluate the generalized integral such that a closed-form solution is achieved.
Numerical computations show that displacement response of beam with damping is asymmetric and the
maximal displacement of the beam occurs behind the moving load. Also, at the subcritical speed the ab-
solute value of the deflection of the beam increases with the increase of load velocity, while the inverse of
this conclusion holds at the supercritical speed. Peak maximal displacement appears when the load travels
at the critical speed.
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